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Abstract
A general theoretical scheme to describe the effective modulus and mass density for acoustic
metamaterials is presented. For such a purpose, an effective medium theory of a
one-dimensional acoustic waveguide containing subwavelength-sized Helmholtz resonators is
formulated. It is shown that, when the wavelength is much larger than the periodic length and
the size of the resonators, the whole composite structure can be treated as an effective
homogeneous medium in accounting for its acoustic properties. It is also shown that the
acoustic characteristics, such as the effective modulus and the effective mass density, can be
determined precisely from the transmission and the reflection data. The calculated effective
modulus and effective mass density confirm that this structure behaves as a homogeneous
metamaterial with a negative effective modulus in a frequency range just above the resonant
frequency.

The study of acoustic and elastic wave propagation in phononic
crystals [1, 2] has received increasing attention in the last
few decades [3–14]. More recently, unusual acoustic wave
phenomena related to acoustic superlenses, such as negative
refraction or wave focusing effects, have been attracting
much attention [9–11]. A superlens can produce images
that contain details finer than the wavelength of the original
waves. The negative refractive behaviour for the acoustic
wave can be described by introducing a negative effective
density and/or a negative refractive index [11]. Although the
static elastic constant must be positive to maintain structural
stability, an effective dynamic medium may possess resonance-
induced negative dynamic parameters [6, 8, 12–14]. The
design of a material with an effective negative mass density
and/or an effective negative modulus, which is called an
acoustic metamaterial, has been demonstrated theoretically and
experimentally [6, 8, 9, 11–14].

In view of the rapid progress in acoustic metamaterials,
it is imperative to clarify the concept and provide a general
theoretical scheme to describe correctly the effective modulus

and mass density of the metamaterials. At present, people
infer the existence of the negative modulus from analysis of
the dispersion relation in given structures. Some works [6, 8]
have suggested that a negative group velocity is sufficient to
obtain a negative effective modulus. For a dispersive acoustic
material with a phase speed, c, and a wavenumber, k = ω/c,
we express its group velocity as

vg = dω

dk(ω)
= c

1 − ω
c

dc
dω

.

Since the acoustic phase speed is c =
√

E
ρ

, where E and ρ

are the modulus and the mass density of the material being
considered respectively, it is clear that the modulus or the
density cannot uniquely be determined by vg. Therefore,
a more rigorous scheme is required to characterize acoustic
metamaterials precisely.

The aim of this work is to establish a general
theoretical scheme to determine the effective modulus and
effective mass density of acoustic metamaterials uniquely
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Figure 1. Schematic cross-sectional view of the geometry of the structure considered in this work. a1, a2 and a3 represent the cross-section of
the slender waveguide, the neck and the cavity tubes, respectively. d1 is the periodic length of the structure along the slender tube. The hole
has a length d2, and the length of the cavity is d3.

from the transmission and reflection coefficients for one-
dimensional (1D) acoustic crystals. In electromagnetism,
to characterize the physical properties of metamaterials
correctly, researchers [15–17] have developed methods for
retrieving the effective permittivity and permeability from
known transmission and reflection coefficients. The main
idea of these methods is simple: first the finite-size 1D
photonic crystal to be treated is regarded as a homogeneous
slab with the same width and, then, using the transmission and
reflection coefficients of the electromagnetic waves through the
finite crystal as those of the slab, one calculates the effective
permittivity and permeability of the slab. The detailed process
is as follows. For a homogeneous slab with a width d , it is
known that the transmission and the reflection coefficients are

t =
[

cos(nkd) − i

2

(
z + 1

z

)
sin(nkd)

]−1

, (1)

r = − i
2

(
z − 1

z

)
sin(nkd)

cos(nkd) − i
2

(
z + 1

z

)
sin(nkd)

, (2)

where n is the relative index, z is the relative impedance and
k is the wavevector of the normally incident wave in vacuum.
Inversely, n and z can be determined as,

z = ±
√

(1 + r)2 − t2

(1 − r)2 − t2
, (3)

n = ±arccos 1−(r2−t2)

2t

kd
+ 2mπ

kd
. (4)

Once n and z are obtained, the permittivity ε and the
permeability μ can be calculated directly from μ = nz and ε =
n/z. We should choose the sign which meets the requirement
Re(z) � 0 and Im(n) � 0. The branch Re(n) or the integer
m is determined by the condition that ε and μ are continuous
functions of frequency.

Although the above methods are originally conceived
for electromagnetic waves, it should be valid for any
wave phenomenon because the key characteristic parameters,
namely the relative wave impedance and the relative index,
are universal for the wave phenomena. For acoustic wave
propagation through a homogeneous slab inside a reference
material (like vacuum for electromagnetic waves), the relative
refractive index, n, is defined as n = c0

cslab
, and the relative

impedance as z = Zslab
Z0

. c0 and Z0 are the acoustic phase
speed and the impedance of the reference, respectively. Thus,

when the transmission t and the reflection r are known, one
can obtain cslab and Zslab, and hence the acoustic modulus,
E = Zc, and the mass density, ρ = Z/c.

In the following, we demonstrate the scheme for
determining the effective modulus and the effective mass
density by analytically investigating a specific example, as
shown in figure 1. The model is a 1D waveguide composed
of a continuous slender tube with the periodically jointed
Helmholtz resonators [8, 18, 19]. The Helmholtz resonator
consists of two tube segments with different lengths and cross
sections. The cavity tube has a length d3 and a cross-section a3

(its volume is V3 = a3d3) and the connecting neck has a length
d2 and a cross-section a2 (its volume is V2 = a2d2). The cross-
section of the main slender tube is a1 and the periodic length is
d1 (its volume is V1 = a1d1).

It is known in the framework of interface response
theory [20] that the inverse surface Green’s function for a semi-
infinite waveguide tube is

[gs]−1 = − i

Z
, (5)

where Z = ρc
a is the impedance of the tube [21], and the

inverse surface Green’s function of a finite tube with a length
d under the closed boundary condition is

g−1
f = 1

Z sin(αd)

( − cos(αd) 1
1 − cos(αd)

)
, (6)

where α = ω/c, and ω is the angular frequency of the
incident acoustic wave. As each Helmholtz resonator is a
combination of two finite tubes under the closed boundary
condition, its inverse Green’s function can be represented as
a simple addition of those of tube 2 and tube 3. Since the
Helmholtz resonator contacts the waveguide tube at the free
end of the neck, here we only give the element of the inverse
surface Green’s function matrix on the free end of tube 2:

g−1
r =

Z3
Z2

+ cot(α2d2) tan(α3d3)

Z3 cot(α2d2) − Z2 tan(α3d3)
. (7)

The inverse surface Green’s function of the composite
system is then obtained as an infinite-dimensional matrix
defined in the interface domain consisting of all the connection
points. The diagonal and off-diagonal elements of this
matrix are, respectively, given by [− 2

Z1
cot(α1d1) + Mg−1

r ]
and [ 1

Z1
sin(α1d1)]. Taking advantage of the translational
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Figure 2. The acoustic band structure for the model with water
inside the waveguide and the Helmholtz resonators. The geometric
parameters [8] are a1 = 16 mm2, d1 = 9.2 mm, a2 = 0.25π mm2,
d2 = 1 mm, a3 = 4π mm2, d3 = 5 mm. The mass density of water is
ρ1 = ρ2 = ρ3 = 1.0 × 103 kg m−3, and the sound speed in water is
c1 = c2 = c3 = 1.485 × 103 m s−1.

periodicity along the infinitely extended waveguide tube, the
dispersion relation of the model can be obtained [22],

cos(kd1) = cos(α1d1) − M

2
Z1 sin(α1d1)g−1

r , (8)

where k is the complex Bloch propagation vector along
the infinitely extended waveguide tube. The acoustic band
structure is shown in figure 2 in the case of an identical material
inside the slender tube and the resonators. There exist two
types of gap: one is the conventional Bragg band gap due to
the periodicity of the slender tube, and the other is the resonant
band gap originating from the resonances of the individual
branches. The central frequency of the Bragg gap satisfies
sin(ωd1

c1
) = 0, while the central frequency of the resonant gap

satisfies

Z3 − Z2 tan

(
ωd2

c2

)
tan

(
ωd3

c3

)
= 0. (9)

For a suitable choice of the geometrical sizes of the
periodic unit, the width of the lowest gap that is a resonant
gap becomes the largest one among all the gaps, and the
geometrical sizes become much smaller than the corresponding
wavelength in the lowest gap. In the case of the same filling
material in all parts of the structure, using the approximation
sin(αi di) � αi di and cos(αi di ) � 1 − 1

2 (αi di)
2, we get the

central frequency of the lowest gap from equation (9),

ω0 = c

√
a2

V3d2
, (10)

and the frequency range of the lowest gap from equation (8),

[
1 + V2 + V3

4V3

a2d1

a1d2

]−1/2

� ω

ω0
�

[
1 + V2 + V3

V1

]1/2

, (11)

where Vi is the volume of the tube i .

Since the wavelength is much larger than the periodic
length and the size of the resonators in the lowest gap, it is valid
to replace the whole composite by an effective homogeneous
medium in considering its acoustic properties [13]. For a finite
structure with N cells connected at its ends to two semi-infinite
leading tubes, in the interface response theory the inverse
surface Green’s function, G−1, of the composite system is
given by a [(N + 1) × (N + 1)] matrix defined in the interface
domain consisting of all the connection points. The diagonal
and off-diagonal elements of this matrix are, respectively,
given by [− 2

Z1
cot(α1d1) + g−1

r ] and [ 1
Z1

sin(α1d1)], except
for the top-left and the bottom-right elements, which change
to [− i

Z1
− 1

Z1
cot(α1d1) + g−1

r ] and [− i
Z1

− 1
Z1

cot(α1d1)],
respectively. Then the transmission coefficient t and the
reflection coefficient r can be obtained directly,

t = 2i

Z1
G(0, N),

r = −1 + 2i

Z1
G(0, 0),

(12)

where G(0, N) and G(0, 0) are the top-right and the top-left
elements of the surface Green’s function matrix, respectively.

Substituting equation (12) into equation (3), we get the
effective z and n representing the equivalent impedance and
refractive index of a homogeneous slab which has the same
width as the finite structure. Finally, we obtain the effective
modulus and mass density of this composite structure. Because
of the localized nature of the resonances, sonic attenuation is
apparent near the resonant frequency even for a structure with a
single unit which lacks periodicity. Also, in electromagnetism,
the calculated reflection and transmission for multiple cells
using the retrieved n and z from the single-cell data are known
to match well with the reflection and transmission data for
the multiple-cell case [15, 17]. Thus, here we calculate the
effective relative modulus and density only with the single unit
cell structure.

The results are shown in figure 3. Since we are only
interested in the properties of the model in the frequency range
around the lowest gap, figure 3(a) shows the transmission
amplitude of a ten-unit finite structure in the low-frequency
domain. In the lowest gap, the maximal attenuation that
corresponds to the resonant frequency of the Helmholtz
resonator is located near the lower edge of the gap. The
frequency dependence of the dispersion, the effective bulk
modulus and the effective bulk mass density are shown in
figures 3(b)–(d), respectively. When the frequency is small
enough, the acoustic wave transmits through the structure
completely and, in this frequency range, the wavevector, the
effective modulus and the effective density are all real. The
ratio, k/ω, and the effective parameters are mostly positive.
This means that the finite structure can be treated as a non-
dispersive homogeneous material when the wavelength is
much larger than the structure length. When the incidental
frequency tends to the gap gradually, mini-gaps appear in
the transmission spectra, and the imaginary parts of the
wavevector, of the effective modulus and of the effective
density become nonzero and increase, whereas Re(Eeff),
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Figure 3. Calculated effective modulus and mass density near the resonant frequency for the structure shown in figure 1. The model
parameters are the same as those in figure 2: (a) the transmission spectra, (b) the dispersion curve, (c) the effective modulus, and (d) the
effective mass density.

(This figure is in colour only in the electronic version)

Re(ρeff) and the slope of Re(k) begin to decrease. Inside
the gap, the slope of Re(k) is negative, thus implying a
negative group velocity. As the frequency of the incident
wave approaches the resonant frequency of the Helmholtz
resonator, the effective dynamic parameters change drastically.
The effective mass density reaches its minimum at a frequency
which is slightly lower than the resonant frequency of the
Helmholtz resonator, and then increases gradually. The
effective modulus decreases gradually and crosses the zero
point at the resonant frequency. When the frequency is
higher than the resonant frequency inside the gap, Re(Eeff)

is negative, while Re(ρeff) is mostly positive. When the
frequency exceeds the gap, the wavevector, the effective
modulus, and the effective density become real and positive
again, and the slope of k tends to a new positive constant.

In addition, from the effective medium approxima-
tion [23], we also obtain, in the steady limit,

Eeff(ω ≈ 0) = E0
1

1 + V2+V3
V1

, (13)

and
ρeff(ω ≈ 0) = ρ0, (14)

where E0 and ρ0 are the modulus and the density of the
reference material. Comparing with the formula [8]

E−1
eff = E0

[
1 − Fω2

0

ω2 − ω2
0 + i�ω

]
, (15)

we find the geometrical factor

F = V2 + V3

V1
. (16)

But the damping parameter � cannot be determined a priori,
and, thus, should be determined through the experiments.

It is interesting to observe that the lowest resonant gap
is divided into two different regions with different characters
at the resonant frequency. Although the group velocity is
negative inside the whole gap, in a narrow frequency range
below the resonant frequency, the effective mass density has
a negative real part; there is a broad range for an effective
negative modulus up to the resonant frequency. For a given
system the same as that of [8], we find that the real part of
the effective mass density is negative in the frequency range
(24.21, 25.08) kHz and that the real part of the effective
modulus is negative in the frequency range (25.08, 29.35) kHz.
The value of 25.08 kHz is just the resonant frequency obtained
by equation (7). Although both the modulus and the mass
density have imaginary parts inside the resonant gap, this fact
does not mean any absorption or gain, since all the constituent
blocks of the model are conventional acoustic materials [24].

In summary, we have presented a theoretical scheme to
characterize an acoustic metamaterial from the transmission
and reflection coefficients. This method allows us to determine
the dispersion relation, the effective modulus and the effective
mass density separately. The method is applied to an acoustic
waveguide containing periodic Helmholtz resonators. It is
shown that this structure behaves as a negative effective
modulus bulk material in the low-frequency range. Moreover,
since the resonant gap is a function of the sizes and pattern of
the structural unit, one can tune the effective elastic modulus
to negative values at desired frequency ranges.
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